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Thermodynamic modeling of the miscibility gaps and the metastability in
the R O –SiO systems (R5La, Sm, Dy, and Er)2 3 2
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Abstract

A range of compositions and temperatures below the monotectic temperature exists where there are thermodynamic restrictions that
prevent the equilibrium solid from forming directly from the undercooled homogeneous liquid. In this region the solid can form only after
liquid–liquid phase separation has occurred. As suggested by earlier research, the thermodynamic restrictions on the crystallization
process may be useful to control the crystallized grain structure in glass–ceramic systems. Thus, understanding the thermodynamic
limitations on the formation of the solid in monotectic systems could have commercial significance. In the present paper, the metastable
liquidus boundaries, liquid miscibility gaps, and spinodal curves in the binary La O –SiO , Sm O –SiO , Dy O –SiO , and2 3 2 2 3 2 2 3 2

Er O –SiO systems were calculated using analytical expressions for the Gibbs free energies of the liquid phases.  2001 Elsevier2 3 2

Science B.V. All rights reserved.
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1. Introduction show a broad range of liquid immiscibility. Therefore, it is
not possible to produce homogeneous glasses containing

Silicate glasses containing rare earth oxides have been modest amounts of rare earth oxide due to the occurrence
studied from the viewpoint of color and fluorescence of immiscibility. Since the 2-liquid regions for composi-
indicators for many decades [1]. Glasses containing rare tions containing greater quantities of rare earth oxides are
earth oxides as dopants have been used as lasers, sensors, located in extremely high temperature, few investigations
optical amplifiers, and radiation resistant glasses. Glasses on the glass-forming behavior of these systems have been
containing rare earth oxides as major components have performed. Toropov and coworkers [6–8] determined
been developed for the production of optical rotators based phase diagrams in several rare earth silicate systems
on the Faraday effect [2]. Recently, various glasses with experimentally. In the La O –SiO system [6], a range of2 3 2

the rare earth oxide were prepared and converted to glass– liquid miscibility gap was found between 2.3 and 23.0
ceramics by heat treatment [3–5]. The effects of rare earth mol% La O at monotectic temperature 16758C and the2 3

ions on the physical properties of glass–ceramics were critical point is located at 7.6 mol% La O and 20758C. In2 3

investigated. The physical properties of glass–ceramics are the Sm O –SiO system [7], a region of liquid immis-2 3 2

closely related with their microstructure. Therefore, in cibility was found between 2.2 and 24.2 mol% Sm O at2 3

order to optimize the microstructure of the glass–ceramics, monotectic temperature 17008C and the critical point is
the crystallization process of the glasses should be con- located at 8.1 mol% Sm O and 21908C. In the Dy O –2 3 2 3

trolled and the phases and phase relationships of the SiO system [8], a range of liquid miscibility gap was2

relevant multi-component system should be investigated found between 1.3 and 22.0 mol% Dy O at monotectic2 3

closely during the heat treatment. temperature 16758C and the critical point is located at 8.0
Phase diagrams for the binary rare earth silicate systems mol% Dy O and 23208C. In the Er O –SiO system [8],2 3 2 3 2

a region of liquid immiscibility was found between 1.4 and
22.7 mol% Er O at monotectic temperature 17008C and2 3*Corresponding author. Tel.: 182-41-860-2580; fax: 182-41-862-
the critical point is located at 11.4 mol% Er O and2774. 2 3

E-mail address: sungkim@wow.hongik.ac.kr (S.S. Kim). 22598C. Since the location of the critical points in these
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systems was not clear, Hageman and Oonk [9] investigated
the region of the miscibility gap in the La O –SiO2 3 2

system. Due to few researches on the rare earth silicate
systems, it is valuable to perform the basic theoretical
studies on the glasses and the glass–ceramics containing
the rare-earth oxides.

Cahn [10] suggested the mechanism of liquid immis-
cibility in a single-phase liquid by schematically describing
the Gibbs free energy of a liquid phase in a hypothetical
binary monotectic system as a function of temperature.
Using the concept of the metastable liquidus he demon-
strated that under certain conditions an equilibrium phase
is unstable in the presence of the metastable homogeneous
liquid phase. Fig. 1 shows a monotectic phase diagram
with a solid that is a line compound. In region I, bounded
by the metastable liquidus and the spinodal curve below
the monotectic temperature, the nucleation of the stable
solid phase from the single-phase liquid is retarded until
the liquid separates into two liquids. This can be explained
by considering the behavior of Gibbs free-energy curves
for the liquid and solid at temperature T in Fig. 2. Any4

tangent line to the homogeneous liquid free energy curve
in region I, being located below the free energy of the solid
phase at its stable composition, shows a negative driving
force for the formation of solid. In region II, bounded by
the metastable liquidus and the spinodal curve above the
monotectic temperature, it is possible to nucleate and grow
a solid phase before liquid–liquid separation occurs. The
solid remains metastable in this region until the liquid

Fig. 2. Free energy curves vs. composition near the monotectic tempera-
ture. The stable and metastable liquidus compositions are shown by
drawing tangent lines. Temperatures correspond to those of Fig. 1 (L:
liquid phase, S: solid phase).

separates into two liquids, into which it will dissolve. This
can also be illustrated by considering the behavior of
Gibbs free energy curves of the liquid and solid at T in2

Fig. 2. Any tangent line to the homogeneous liquid free
energy curve in region II, being located above the free
energy of the solid phase at its stable composition, shows a
positive driving force for the formation of the solid.
Therefore, there exist some composition and temperature
ranges where a stable solid cannot form directly from an
undercooled liquid phase under the monotectic temperature
and a metastable solid cannot dissolve into a single phase
liquid above the monotectic temperature.

Computer modeling of thermodynamic properties of
phases makes it possible to extract information from
existing phase diagrams without the need for additional
experiments. Furthermore, extensions of equilibrium data
to metastable data and vice versa can be made. Once the
Gibbs free-energy expressions for liquid phases are de-
termined, regions I and II can be calculated. By using the
Gibbs free-energy expressions for the liquid phases, itFig. 1. Phase diagram showing the metastable liquidus through the

miscibility gap. becomes possible to extend the work of Cahn [10] and
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l s→l s→lidentify compositions and temperatures to verify the G 5 (1 2 x)DG 1 xDGm i j

influence of phase separation on the crystallization process
1 RT [(1 2 x) ln(1 2 x) 1 x ln x]

experimentally. Hageman and Oonk [9] developed a
0 1

1 x(1 2 x)[A 1 A (1 2 2x)] (1)thermodynamic model for the liquid phase to calculate the
critical point of the miscibility gap after investigating the s→ lwhere x is the mole fraction of component j, DG andimiscibility gap in several silicate systems including the s→ l

DG are the differences in Gibbs free energy betweenjLa O –SiO system. However, there is a flaw in their2 3 2 the s phase and the l phase of pure components i and j,approach. When calculating the equilibrium compositions 0 1respectively, and A and A are the interaction parametersat the monotectic temperature, they considered only
of the liquid phase. In this work, the interaction parametersequilibrium between two liquids and did not include the
are expressed as linear functions of temperature.solid phase in their calculations. Therefore, their result

The partial molar Gibbs free energies of components icannot be used to calculate the monotectic temperature and
and j for the liquid phase (l) are given bycomposition precisely. Recently, Wang and coworkers

[11,12] assessed thermodynamically the binary phase 2l s→l 2 0 1G 5 DG 1 RT ln(1 2 x) 1 x [A 1 A (3 2 4x)] (2a)i idiagrams of the Nd O –SiO , Sm O –SiO , and Gd O –2 3 2 2 3 2 2 3

SiO systems by using the experimental data in the 2l s→l 2 0 12 G 5 DG 1 RT ln x 1 (1 2 x) [A 1 A (1 2 4x)] (2b)j jliteratures, and they used the second-order Redlich–Kister
equation [13] to express the Gibbs free energy of the liquid

To model phase diagrams, basic physical data such asphases as a function of composition and temperature. The
heat capacity, melting point, and heat of fusion arephase diagrams were calculated through the whole com-
required. The heat capacity data, however, are available forposition but the large difference between the calculated
only a few oxides and are sometimes inaccurate. In theand experimental results exists near the top of miscibility
present calculation, only the melting points and heats ofgaps.
fusion of components were used to calculate the interactionRecently Kim and Sanders [14] assessed the metastable
parameters of the solid and liquid phases. If the small heatliquidi as well as the miscibility gaps in alkaline-earth
capacity corrections to the enthalpy and entropy of fusionsilicate systems in order to estimate thermodynamic re-
are neglected, thenstrictions near the monotectic. In the present work, the

first-order Redlich–Kister solution model was used to Ts→l ]DG 5 (DH ) 1 2 (3a)describe the thermodynamic properties of liquid solutions S Di f,i Tm,i
in the high silica regions of the binary La O –SiO ,2 3 2

Sm O –SiO , Dy O –SiO , and Er O –SiO systems. T2 3 2 2 3 2 2 3 2 s→l ]]DG 5 (DH ) 1 2 (3b)S Dj f, jThe multiple linear regression method was used to de- Tm, j
termine the interaction parameters of liquid solutions from

where T , T , DH , and DH are the melting points andmiscibility gap data in the literature. The miscibility gaps m,i m, j f,i f, j

the enthalpies of fusion of the component i and j, respec-calculated in the present work were compared and dis-
tively. The frequently cited melting point and heat ofcussed with other data available from the literature. By
fusion of silica [16,17] were used in the present calcula-calculating the spinodals and metastable liquidi, regions I
tions. For the rare earth oxides, the constant entropy ofand II in Fig. 1 were determined and Cahn’s suggestion
fusion of 6 cal /mol?K [18] was applied, which waswas discussed for the above systems. The results of the
obtained from using the limiting slopes of the liquiduscalculation will provide direction for future experiments
curves at 100% R O in the binary R O –Al O systemsdesigned to investigate liquid–liquid phase separation. 2 3 2 3 2 3

(from R5La to Dy).
To obtain the interaction parameters of the liquid phase,

three equilibrium conditions were considered. First, at the
top of the liquid miscibility gap, the second and third2. Thermodynamic methodology
derivatives of the Gibbs free energy function, with respect
to composition, must be zero, i.e.In binary systems with asymmetric miscibility gaps, the

Gibbs free energy of the phase cannot be expressed using a
2 l

≠ G 1 1m 0 1regular solution model. Instead, a subregular solution ]] ]]] ]5 RT 1 2 2A 2 6A (1 2 2x )S D F G2 c cx(1 2 x )model can be applied to account for the asymmetry. In the ≠x cc

present work, a solution model was chosen in the form of 5 0 (4a)
the Redlich–Kister equation, which proved to have the

3 lbest fitting capability among several solution models [15]. ≠ G 1 1m 1]] ]]] ]5 RT 2 1 12A 5 0 (4b)S D3 c 2 2F GWhen the standard states are solid phases (s) of pure ≠x (1 2 x ) xc ccomponents i and j, the Gibbs free energies of liquid (l)
and the solid (s) phases in the i–j system are given by where T and x are the temperature and composition at thec c
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critical point, respectively. Rearranging the above-de- of temperature, the above-described equation can be
scribed equations gives expressed as

0 0 1 11 1 Y 5 A X 1 A TX 1 A X 1 A TX (10b)0 1 1 1 2 1 1 2 2 2]]] ]RT 1 5 2A 1 6A (1 2 2x ) (5a)F Gc cx(1 2 x ) cc 0 0 0 1 1 1where, A 5 A 1 A T and A 5 A 1 A T.1 2 1 2
1 1 Using experimental liquid miscibility data, the inter-1]]] ]RT 2 5 2 12A (5b)c 2 2F G action parameters in Eqs. (10a) and (10b) can be de-(1 2 x ) xc c

termined through a multiple linear regression method
Second, below the critical point of the miscibility gap, [14,19], which permits the metastable liquidus, as well as

the equilibrium condition for the coexistence of two liquid the equilibrium miscibility gap, to be calculated as a
phases requires equality of the partial molar Gibbs free function of temperature.
energies of each component. Therefore, using Eqs. (2a) Either stable or metastable liquidus compositions can be
and (2b) the following equations for i and j components determined by extrapolating the tangent to the free energy
must be satisfied: curve of the liquid phase to the bottom of the free energy

2 0 1 curve of the pure solid phase at the composition of theRT ln(1 2 x ) 1 x [A 1 A (3 2 4x )]1 1 1
pure solid phase, as shown in Fig. 2. This condition can be

2 0 1
5 RT ln(1 2 x ) 1 x [A 1 A (3 2 4x )] (6a) obtained by substituting x for x and T for T in Eq. (8)2 2 2 l mo mo

respectively, where x refers to the stable or metastablel2 0 1RT ln x 1 (1 2 x ) [A 1 A (1 2 4x )] liquidus composition at the temperature T. By solving Eq.1 1 1

2 0 1 (8) in this manner about the monotectic temperature, the
5 RT ln x 1 (1 2 x ) [A 1 A (1 2 4x )] (6b)2 2 2 metastable liquidi inside the miscibility gap and the stable

liquidi outside the miscibility gap can be obtained. Thewhere the x and x are two equilibrium compositions of l1 2 1

spinodal curve was calculated by applying the conditionand l phases on the liquid miscibility gap at temperature2

that the second derivative of free energy must be zero, i.e.T. Rearranging the above-described equations gives
2 l

≠ G 1 1RT ln[(1 2 x ) /(1 2 x )] m 0 11 2 ]] ]] ]5 RT 1 2 2A 2 6A (1 2 2x) 5 0S D F G2 x(1 2 x)0 2 2 1 2 2 ≠x5 A (x 2 x ) 1 A [x (3 2 4x ) 2 x (3 2 4x )] (7a)2 2 2 2 2 1
(11)

RT ln(x /x )1 2 The above-described equation can be solved numerically.
0 2 2

5 A [(1 2 x ) 2 (1 2 x ) ]2 1

1 2 2
1 A [(1 2 x ) (1 2 4x ) 2 (1 2 x ) (1 2 4x )]. (7b)2 2 1 1 3. Results and discussion

Third, at the monotectic temperature (T ), equilibriummo The calculated miscibility gaps in the La O –SiO ,2 3 2
between two liquids and pure solid for component i is Sm O –SiO , Dy O –SiO , and Er O –SiO systems are2 3 2 2 3 2 2 3 2
required. Therefore, Eq. (2a) must be zero at compositions shown in Figs. 3–6. In these figures, the solid, dot, and
x and x since in the standard state of the pure solid there1 2 dashed curves show the miscibility gaps, metastable liq-
is no solubility of component j in component i. uidus curves and spinodal curves calculated in the present

work, respectively. Also shown are the stable liquidus andDH (1 2 T /T ) 1 RT ln(1 2 x )f,i mo m,i mo mo the metastable extensions of the miscibility gap. The circle
2 0 1

1 x [A 1 A (3 2 4x )] 5 0 (8) symbols represent the experimental data by Toropov andmo mo

co-workers [6–8], which were used to determine the
where x ’s are two equilibrium compositions x and x ofmo 1 2 interaction parameters of the liquid solutions in the present
l and l phases on the liquid miscibility gap at T ,1 2 mo work. The liquid immiscibility in many oxide systems is
respectively. Rearranging the above-described equation 2related to differences in ionic field strength Z /a , where
gives Z5the cation charge and a5the distance between the
2 [DH (1 2 T /T ) 1 RT ln(1 2 x )] /x cation and the oxygen ion [20,21]. However, since thef,i mo m,i mo mo mo

lanthanide ions all have similar electronic configurations0 1
5 A x 1 A x (3 2 4x ) (9)mo mo mo ˚and exhibit a small difference in ionic radii (from 1.06 A

31 31 31˚for La to 0.88 A for Er ) with R being the common
The above-given expressions (Eqs. (5a), (5b), (7a), (7b), oxidation state, the cationic field strength within the

and (9)) can be considered as a linear combination, i.e. lanthanide group is very similar. Therefore, miscibility
0 1 gaps in the present rare earth silicate systems show aY 5 A X 1 A X . (10a)1 2 similar size.

When interaction parameters are given by a linear function Table 1 summarizes the interaction parameters of the
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Fig. 3. Calculated phase diagram and metastable liquidus in the La O – Fig. 5. Calculated phase diagram and metastable liquidus in the Dy O –2 3 2 3

SiO system (s: experimental data [6]). SiO system (s: experimental data [8]).2 2

liquid solutions in the present systems. The calculated Oonk [9] tried to fit their experimental data to their own
miscibility gaps in Figs. 3–6 agree well with the ex- solution model and obtained good results for the several
perimental data through the whole region. Hageman and silicate systems. However, it should be mentioned that they

Fig. 4. Calculated phase diagram and metastable liquidus in the Sm O – Fig. 6. Calculated phase diagram and metastable liquidus in the Er O –2 3 2 3

SiO system (s: experimental data [7]). SiO system (s: experimental data [8]).2 2
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Table 1 T is expected to be greater. Figs. 3–6 clearly show thatmono
Calculated interaction parameters of liquid phases in the rare earth silicate the shape of the metastable liquidus is dependent on bothE 0 1systems (in kJ /mol). Excess free energy: G 5 x(1 2 x)[A 1 A (1 2 2x)],

the melting point and the location of SiO , relative to the2x 5 xR O2 3 miscibility gap. In the present silicate systems, the size of
Systems Interaction parameters region I is smaller than that of region II and the metastable

0La O –SiO A 239.897110.0094T /K2 3 2 liquidi at T pass approximately through a positionmono1A 23.951820.0060T /K 1 /4–1/5 the size of the miscibility gaps. This result is0Sm O –SiO A 293.920310.0341T /K2 3 2
1 similar to that of the alkaline earth silicate systems [14].A 48.248320.0168T /K
0 Table 3 shows the results of an analysis on the regionsDy O –SiO A 2.731420.0133T /K2 3 2
1A 4.548610.0044T /K where a metastable solid can exist. Dx and DTMG MG
0Er O –SiO A 281.090810.0274T /K2 3 2 respectively are the composition range at T and themono1A 40.927620.0132T /K height of the miscibility gap; Dx and Dx , respectivelyI II

denote the composition ranges of regions I and II at Tmono

did not consider the equilibria between two liquid phases and DT and DT respectively denote the heights ofI II

and a SiO phase at the T . Therefore, it is doubtful regions I and II from T . Cook and Hilliard [22]2 mono mono

whether their method could be applied to various systems. described a simple method to estimate the spinodal curve
For the Sm O –SiO system, the present calculation from by using miscibility data. Although there are some limita-2 3 2

the first-order Redlich–Kister model shows good agree- tions to this approach, they showed that the size of the
ment with the experimental data [7] and the result calcu- spinodal is proportional to that of miscibility gap (DxMG

lated from the second-order Redlich–Kister model [11]. ¯œ3 Dx ). Dx and Dx are determined by thespinodal I II

The results of the present calculations are summarized in spinodal line and the miscibility gap; therefore, they
Table 2 and compared with experimental data in the increase as Dx increases. For the present systems, DxMG I

literature. and Dx are |10 and 30 mol% of Dx , respectively.II MG

The stability of the liquidus is dependent only on its Therefore, their sum becomes |40 mol%, which agrees
location, with respect to the miscibility gap; thus, it is a well with the result of Cook and Hilliard (42 mol%) [22].
single continuous curve throughout the composition range. On the other hand, DT and DT are determined from TI II mo

Therefore, as suggested by Cahn [10], the metastable and the maximum and the minimum of the metastable
liquidus might be obtained from the extrapolation of the liquidus; T is known from the phase diagrams. However,mo

stable liquidus. However, it is very difficult to extrapolate since the maximum and the minimum of the metastable
the short stable liquidus into the miscibility gap. Further- liquidus should be calculated from the phase relations
more, it is impossible to estimate the minimum and between the liquid and solid phases, no simple expressions
maximum points on the metastable liquidus. As the for DT and DT relative to the height of the miscibilityI II

melting point of solid phase increases, compared to T , gap can be derived [14]. As an analysis on the shape ofmono

and the location of the solid phase is closer to the metastable liquidus, Fig. 7 shows DT and DT as aI II

miscibility gap, the height of metastable liquidus near function of slope of stable liquidus at T . As the slope ofmo

Table 2
Survey of experimental and calculated miscibility gap data in the rare earth silicate systems (in mol% and 8C)

System Critical point Monotectic

Experimental Present calc. Experimental Present calc.

x T x T x x T x x Tc c c c 1 2 mo 1 2 mo

La O –SiO 7.6 2075 [6] 9.65 2073 2.3 23.0 1675 [6] 1.3 22.3 16792 3 2

6.0 2042 [9]
Sm O –SiO 8.1 2190 [7] 11.9 2190 2.2 24.2 1700 [7] 0.8 23.3 16952 3 2

Dy O –SiO 8.0 2320 [8] 7.9 2319 1.3 22.0 1675 [8] 1.2 22.0 16812 3 2

Er O –SiO 11.4 2259 [8] 11.4 2263 1.4 22.7 1700 [8] 0.9 22.3 16902 3 2

Table 3
Sizes of miscibility gap, region I, and region II, and slopes at x (in mol%, 8C, and 8C/mol%)mo

System Dx Dx Dx DT DT DT 2(slope) 2(slope)MG I II MG I II I II

La O –SiO 21.0 2.6 6.4 394 27 102 27.78 31.252 3 2

Sm O –SiO 22.5 2.1 6.4 495 30 157 31.33 502 3 2

Dy O –SiO 20.8 2.7 6.1 638 26 122 25 252 3 2

Er O –SiO 21.4 2.5 6.4 573 27 149 25 66.672 3 2
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regions I and II, especially in case of the short stable
liquidus, such as those in rare-earth silicate systems.

4. Conclusions

A thermodynamic modeling of phase diagrams in the
binary La O –SiO , Sm O –SiO , Dy O –SiO , and2 3 2 2 3 2 2 3 2

Er O –SiO systems was described by using the Gibbs2 3 2

free energies of the phases. The subregular solution model
was applied to describe the liquid phases in these systems.
The interaction parameters in the excess-Gibbs-free-energy
expression of liquid phases were obtained by using the
miscibility data through the multiple-linear-regression
method. The present calculated miscibility gaps agreed
well with the experimental data that were available in the
literature. By calculating the metastable liquidus, the
regions where a metastable solid can exist were obtained.
Also, the possible composition range where liquid–liquid
phase separation can occur via a spinodal decomposition
process was calculated.
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